Mode I and mixed mode fracture of polysilicon for MEMS
نویسندگان
چکیده
منابع مشابه
Finite Element Modeling of Crack Initiation Angle Under Mixed Mode (I/II) Fracture
Present study deals with the prediction of crack initiation angle for mixed mode (I/II) fracture using finite element techniques and J-Integral based approach. The FE code ANSYS is used to estimate the stress intensity factor numerically. The estimated values of SIF were incorporated into six different crack initiation angle criteria to predict the crack initiation angle. Single edge crack spec...
متن کاملMixed-mode I/II Interlaminar Fracture of CF/PEI Composite Material
Failures in composite materials occur mainly due to interlaminar fracture, also called delamination, between laminates. This indicates that characterizing interlaminar fracture toughness is the most effective factor in the fracture of composite materials. This study reports investigation on mixed-mode interlaminar fracture behaviour in woven carbon fibre/polyetherimide (CF/PEI) thermoplastic co...
متن کاملMixed Mode Fracture Analysis of Multiple Interface Cracks
This paper contains a theoretical formulation of multiple interface cracks in two bonded dissimilar half planes subjected to in-plane traction. The distributed dislocation technique is used to construct integral equations for a dissimilar mediums weakened by several interface cracks. These equations are of Cauchy singular type at the location of dislocation, which are solved numerically to obta...
متن کاملEffect of Rock Fracture Filling on Mode I and II Fracture Toughness
This paper focuses on some fracture toughness tests performed on the pre-cracked Brazilian specimens of rock-like materials. Also the effect of rock fracture filling on the fracture toughness was considered experimentally. Fracture toughness is a key parameter for studying the crack propagation and fragmentation processes in rock structures. Fracture mechanics is an applicable tool to improve ...
متن کاملTensile-shear transition in mixed mode I/III fracture
The propensity of the transition of fracture type in either brittle or ductile cracked solid under mixed-mode I and III loading conditions is investigated. A fracture criterion based on the competition of the maximum normal stress and maximum shear stress is utilized. The prediction of the fracture type is determined by comparing smax=rmax at a critical distance from the crack tip to the materi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fatigue & Fracture of Engineering Materials and Structures
سال: 2007
ISSN: 8756-758X,1460-2695
DOI: 10.1111/j.1460-2695.2006.01086.x